Red-ucation: a Novel Cnn Architecture Based on Denoising Non-linearities
نویسندگان
چکیده
Image denoising is the most fundamental image enhancement task, and many algorithms have been proposed over the years for its solution. Interestingly, such an image denoising “engine” can be used to solve general inverse problems. Indeed, in our recent work we have presented the Regularization by Denoising (RED) framework: using a denoising engine in defining the regularization of any inverse problem. We have shown how this scheme leads to well-founded iterative algorithms in which the denoiser is applied in each iteration. In this work we describe how a learned version of RED defines a novel convolutional neural network architecture, where the commonly used point-wise nonlinearities are replaced by a denoising engine. We show how this network can be optimized end-to-end using a back-propagation that relies on guided denoising algorithms. As a case-study, we concentrate on the image deblurring problem and show the superiority of the trainable variant of RED over its analytic form.
منابع مشابه
Universal Denoising Networks : A Novel CNN-based Network Architecture for Image Denoising
We design a novel network architecture for learning discriminative image models that are employed to efficiently tackle the problem of grayscale and color image denoising. Based on the proposed architecture, we introduce two different variants. The first network involves convolutional layers as a core component, while the second one relies instead on non-local filtering layers and thus it is ab...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملBlock-Matching Convolutional Neural Network for Image Denoising
There are two main streams in up-to-date image denoising algorithms: non-local self similarity (NSS) prior based methods and convolutional neural network (CNN) based methods. The NSS based methods are favorable on images with regular and repetitive patterns while the CNN based methods perform better on irregular structures. In this paper, we propose a blockmatching convolutional neural network ...
متن کاملA Novel NeighShrink Correction Algorithm in Image Denoising
Image denoising as a pre-processing stage is a used to preserve details, edges and global contrast without blurring the corrupted image. Among state-of-the-art algorithms, block shrinkage denoising is an effective and compatible method to suppress additive white Gaussian noise (AWGN). Traditional NeighShrink algorithm can remove the Gaussian noise significantly, but loses the edge information i...
متن کاملA Cascaded Convolutional Nerual Network for X-ray Low-dose CT Image Denoising
Image denoising techniques are essential to reducing noise levels and enhancing diagnosis reliability in low-dose computed tomography (CT). Machine learning based denoising methods have shown great potential in removing the complex and spatial-variant noises in CT images. However, some residue artifacts would appear in the denoised image due to complexity of noises. A cascaded training network ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017